
Carving out a Proof Theory from Cedille’s

Core

Andrew Marmaduke

10/6/2023

The University of Iowa

1

Entering the Multiverse

What might have Cedille looked like in another universe?

2

Motivating Examples

How do we build subsets like the set of Even natural

numbers in a conceptually intuitive way?

How do we construct inductive types without efficiency

problems with lambda encoded data?

3

Motivating Examples

How do we build subsets like the set of Even natural

numbers in a conceptually intuitive way?

How do we construct inductive types without efficiency

problems with lambda encoded data?

3

Refresher on Dependent Types

f : N→ N

function between natural numbers

P : N→ Set

predicate on natural numbers

g : (A : Set)→ List A

(parametric) function from types to lists

h : (n : N)→ P n

(dependent) function from naturals to instantiated predicate

4

Refresher on Dependent Types

f : N→ N

function between natural numbers

P : N→ Set

predicate on natural numbers

g : (A : Set)→ List A

(parametric) function from types to lists

h : (n : N)→ P n

(dependent) function from naturals to instantiated predicate

4

Refresher on Dependent Types

f : N→ N

function between natural numbers

P : N→ Set

predicate on natural numbers

g : (A : Set)→ List A

(parametric) function from types to lists

h : (n : N)→ P n

(dependent) function from naturals to instantiated predicate

4

Refresher on Dependent Types

f : N→ N

function between natural numbers

P : N→ Set

predicate on natural numbers

g : (A : Set)→ List A

(parametric) function from types to lists

h : (n : N)→ P n

(dependent) function from naturals to instantiated predicate

4

Constructing the Set of Even Numbers

IsEven : N→ Set

any sound way of representing evenness of a natural

(a : A)× P a

is how we will write dependent pairs

Even = (n : N)× IsEven n

pair a natural with evidence it’s even

5

Constructing the Set of Even Numbers

IsEven : N→ Set

any sound way of representing evenness of a natural

(a : A)× P a

is how we will write dependent pairs

Even = (n : N)× IsEven n

pair a natural with evidence it’s even

5

Constructing the Set of Even Numbers

IsEven : N→ Set

any sound way of representing evenness of a natural

(a : A)× P a

is how we will write dependent pairs

Even = (n : N)× IsEven n

pair a natural with evidence it’s even

5

How to connect Even and Nat?

ι : Even ↪→ N

ask a mathematician, and they say there should be an

injection from Even to N

ι ≡ fst 2 : N 6= 2 : Even

with the current definition

ι ≡ id

can we change things so that the injection is equal to the

identity?

6

How to connect Even and Nat?

ι : Even ↪→ N

ask a mathematician, and they say there should be an

injection from Even to N

ι ≡ fst 2 : N 6= 2 : Even

with the current definition

ι ≡ id

can we change things so that the injection is equal to the

identity?

6

How to connect Even and Nat?

ι : Even ↪→ N

ask a mathematician, and they say there should be an

injection from Even to N

ι ≡ fst 2 : N 6= 2 : Even

with the current definition

ι ≡ id

can we change things so that the injection is equal to the

identity?

6

Quantification w.r.t. what?

h : (n : N)→ P n

via the Curry-Howard correspondence, this is a universal

quantification, but what is the domain? The natural numbers?

No. The domain is the proofs for the given type.

For Even, it is the proofs that the element is an even natural,

and hence a pair.

7

Quantification w.r.t. what?

h : (n : N)→ P n

via the Curry-Howard correspondence, this is a universal

quantification, but what is the domain? The natural numbers?

No. The domain is the proofs for the given type.

For Even, it is the proofs that the element is an even natural,

and hence a pair.

7

Quantifying over Something New

| · | : Proofs→ Objects

erasure constructs an object (or an individual) from a proof

Change conversion from t =β s to

∃ t′ s′. t→β t
′ ∧ s→β s

′ ∧ |t′| = |s′|
Dependent types now quantify over a domain of objects

instead of proofs.

8

Quantifying over Something New

| · | : Proofs→ Objects

erasure constructs an object (or an individual) from a proof

Change conversion from t =β s to

∃ t′ s′. t→β t
′ ∧ s→β s

′ ∧ |t′| = |s′|
Dependent types now quantify over a domain of objects

instead of proofs.

8

Quantifying over Something New

| · | : Proofs→ Objects

erasure constructs an object (or an individual) from a proof

Change conversion from t =β s to

∃ t′ s′. t→β t
′ ∧ s→β s

′ ∧ |t′| = |s′|
Dependent types now quantify over a domain of objects

instead of proofs.

8

Modifying Dependent Pairs

9

Modifying Even

{x ∈ N | ∃ k, 2k = x}

(x : N)× IsEven x

(x : N) ∩ IsEven x

10

Is it too hard to inhabit?

Is it too difficult to find types that can be intersected to meet

the side-condition?

Λx. t : (x : A)⇒ P x |Λx. t| = |t| x /∈ FV(|t|)

Add erased functions (or object-irrelevant functions)

Let’s us mark indices as erased, so that the objects of Vec A n

are the same objects as List A, additionally all types become

erased

11

Is it too hard to inhabit?

Is it too difficult to find types that can be intersected to meet

the side-condition?

Λx. t : (x : A)⇒ P x |Λx. t| = |t| x /∈ FV(|t|)

Add erased functions (or object-irrelevant functions)

Let’s us mark indices as erased, so that the objects of Vec A n

are the same objects as List A, additionally all types become

erased

11

Is it too hard to inhabit?

Is it too difficult to find types that can be intersected to meet

the side-condition?

Λx. t : (x : A)⇒ P x |Λx. t| = |t| x /∈ FV(|t|)

Add erased functions (or object-irrelevant functions)

Let’s us mark indices as erased, so that the objects of Vec A n

are the same objects as List A, additionally all types become

erased

11

Inductive Types

To derive inductive types, we also need equality

12

Equality

Take the standard Martin-Löf Identity Type

J -A -P -x -y r w

Types must be erased, but also mark indices as erased

(critically, the equality evidence r cannot be erased)

refl -x

Opportunity: we can mark the input to refl erased, there can

only be one object corresponding to it!

13

Equality

Take the standard Martin-Löf Identity Type

J -A -P -x -y r w

Types must be erased, but also mark indices as erased

(critically, the equality evidence r cannot be erased)

refl -x

Opportunity: we can mark the input to refl erased, there can

only be one object corresponding to it!

13

Equality

Take the standard Martin-Löf Identity Type

J -A -P -x -y r w

Types must be erased, but also mark indices as erased

(critically, the equality evidence r cannot be erased)

refl -x

Opportunity: we can mark the input to refl erased, there can

only be one object corresponding to it!

13

Equality, Reasoning about Intersection

Need to add a rule to reason about dependent intersections

promote : (x y : (a : A) ∩ P a)⇒ x.1 =A y.1→ x =(a:A)∩Pa y

Compensates for lack of an induction rule

14

Inductive Types are Derivable

The system as described is strong enough to derive inductive

types (via an impredicative church encoding)

This is basically Cedille’s Core! (except equality is much less

exotic)

To get to Mendler encodings we need a bit more

15

Inductive Types are Derivable

The system as described is strong enough to derive inductive

types (via an impredicative church encoding)

This is basically Cedille’s Core! (except equality is much less

exotic)

To get to Mendler encodings we need a bit more

15

Inductive Types are Derivable

The system as described is strong enough to derive inductive

types (via an impredicative church encoding)

This is basically Cedille’s Core! (except equality is much less

exotic)

To get to Mendler encodings we need a bit more

15

Looking for a postdoc for Fall 2024

Q & A

16

